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1 Introduction 

Air quality European-wide annual maps based on spatial interpolation have been produced under 
ETC/ATNI (resp. previous consortia ETC/ACM and ETC/ACC) since 2005 (Horálek, 2021b and 
references therein). The mapping methodology combines monitoring data, chemical transport model 
results and other supplementary data using a linear regression model followed by kriging of the 
residuals produced from that model (‘residual kriging’). Separate mapping layers (rural, urban 
background and urban traffic, where relevant) are created separately and subsequently merged 
together into the final map. In order to reflect the three steps applied, the methodology is called 
Regression – Interpolation – Merging Mapping (RIMM). These maps have historically been 
constructed each year for the main air pollutants (PM10, PM2.5, O3, NO2), based on validated air 
quality (AQ) measurement data that are reported to EEA by its member and cooperating countries 
(and other voluntary reporting countries) under the AQ Directives. In order to add more information 
on concentration levels in areas with no measurements, the EMEP atmospheric dispersion model has 
been used as a secondary source of information, together with other supplementary data like 
altitude, land cover and meteorological data. However, due to the delays in production and 
availability of the validated AQ measurement data and the EMEP model output, the RIMM AQ maps 
of a year Y have typically not been available until May of year Y+2. 

Apart from the validated measurement data uploaded to the EEA’s AQ e-reporting database, 
preliminary measurement up-to-date (UTD) data are available in this same database on an hourly 
basis for most of the reporting countries. The validated data are stored in the so-called E1a data set, 
while the UTD data are in the E2a data set of the AQ e-reporting database. The E2a data, while not 
fully validated, are available at an earlier point, typically a few hours after their measurement. The 
earlier availability of E2a data creates an opportunity to provide AQ spatial mapping at an earlier 
date. In this report, we therefore evaluate the use of the E2a data for their potential at preparing 
interim annual spatial maps that would be available at an earlier point in time. 

Since the objective of this report is to evaluate the use of E2a data, which are available one year in 
advance of the E1a data, we have opted to use within the RIMM methodology a modelling data 
product that is available also in advance of the E1a data. The Copernicus Atmosphere Monitoring 
Service (CAMS) ensemble forecast (the median of nine regional atmospheric dispersion models) 
model product is an attractive option because the CAMS ensemble forecast is produced each day, 
and so an entire year of model forecast data is already available on December 31st of each year. By 
contrast the EMEP model results, which have previously been used regularly in the RIMM 
methodology, are only available in September in the following year. The CAMS ensemble forecast 
was evaluated in the RIMM methodology in Horálek et al. (2021a), and was found to have skills 
comparable to the EMEP model. Our intended approach therefore has potential to deliver more 
timely interim AQ mapping that still maintains an adequate level of skill at representing the true 
pollutant spatial patterns. 

As described in Horálek et al. (2021a), data gaps of E2a were identified in several areas. In order to 
overcome this obstacle, it was suggested to estimate so-called pseudo stations data in the areas with 
the lack of E2a stations, based on the regression relation between E2a data from year Y and validated 
E1a data from year Y-1. In order to improve the estimates of the pseudo data, the ratio of the 
modelling results from years Y and Y-1 is also used in the regression relation. 

In this report, we present and evaluate AQ interim mapping of the PM10 annual average, the NO2 
annual average and the ozone indicator SOMO35, based on E2a (UTD) measurement data and CAMS 
forecast model data. We also briefly check the possibility to prepare the interim map for PM2.5, 
however low number of stations with the E2a data prevents us from such mapping. We examine the 
interim annual maps for 2017. We include an evaluation of the quality of the three produced maps 
comparing them with the validated E1a data, using the statistical indicators R2, standard error, RMSE, 
relative RMSE, and bias. Next to this, we also present the interim maps for 2019, for the three 
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pollutants PM10, NO2 and ozone. The evaluation of these maps using the validated E1a 2019 data has 
not been performed, as these data were not available in the time designated for this study. For the 
interim 2019 maps, we have performed only the cross-validation based on the E2a data. 

Chapter 2 describes the methodological aspects. Chapter 3 documents input data and the evaluation 
approach. Chapter 4 presents the evaluation of the spatial mapping results for the preliminary maps 
for 2017. Chapter 5 presents the preliminary maps for 2019. Chapter 6 gives the conclusions and 
recommendations. Annex provides maps of measurement stations used for mapping and validation. 

2 Mapping Methodology 

2.1 Spatial Mapping Methodology 

The mapping methodology used in the Regression – Interpolation – Merging Mapping method (RIMM) 
as routinely used in the spatial mapping under the ETC/ATNI (Horálek et. al., 2021b) consists of a linear 
regression model followed by kriging of the residuals from that regression model (residual kriging): 

𝑍̂(𝑠0) =  𝑐 + 𝑎1𝑋1(𝑠0) + 𝑎2𝑋2(𝑠0) + ⋯ + 𝑎𝑛𝑋𝑛(𝑠0) + 𝜂̂(𝑠0)   (2.1) 

where 𝑍̂(𝑠0) is the estimated concentration at a point so, 
 𝑋1(𝑠0) is the chemical transport model (CTM) data at point so,  
 X2(s0),…, Xn(s0)  are n-1 other supplementary variables at point so, 
 c, a1, a2,,…, an  are the n+1 parameters of the linear regression model calculated based on 

the data at the points of measurement, 
 𝜂̂(𝑠0) is the spatial interpolation of the residuals of the linear regression model at 

point so, based on the residuals at the points of measurement. 

For different pollutants and area types (rural, urban background, and for PM10 and NO2 also urban 
traffic), different supplementary data are used. The spatial interpolation of the regression residuals is 
carried out using ordinary kriging, according to  

𝜂̂(𝑠0) = ∑ 𝜆𝑖𝜂(𝑠𝑖)𝑁
𝑖=1   with ∑ 𝜆𝑖

𝑁
𝑖=1 = 1,    (2.2) 

where 𝜂̂(𝑠0) is the interpolated value at a point so,  
 N is the number of the measurement points used in the interpolation, which is 

fixed based on the variogram; in any case, 20 ≤ N ≤ 50,  
 η(si)  is the residual of the linear regression model at the measurement point si,  
 λ1,…, λN are the estimated weights based on the variogram, see Cressie (1993). 

For PM10, prior to linear regression and interpolation, a logarithmic transformation to measurements 
and CTM modelled concentrations is executed. After interpolation, a back-transformation is applied. 

Separate map layers are created for rural and urban background areas on a grid at resolution of 
1x1 km2 (for PM10 and NO2) and 10x10 km2 (for ozone), and for urban traffic areas at 1x1 km2 (for 
PM10 and NO2). The rural background map layer is based on rural background stations, the urban 
background map layer on urban and suburban background stations and the potential urban traffic 
map layer is based on urban and suburban traffic stations. Subsequently, the separate map layers are 
merged into one combined final map at 1x1 km2 resolution, according to 

𝑍̂𝐹(𝑠0) = (1 − 𝑤𝑈(𝑠0)) ∙ 𝑍̂𝑅(𝑠0) + 𝑤𝑈(𝑠0) ∙ 𝑍̂𝑈𝐵(𝑠0) resp.   

𝑍̂𝐹(𝑠0) = (1 − 𝑤𝑈(𝑠0)) ∙ 𝑍̂𝑅(𝑠0) + 𝑤𝑈(𝑠0)(1 − 𝑤𝑇(𝑠0)) ∙ 𝑍̂𝑈𝐵(𝑠0) + 𝑤𝑇(𝑠0) ∙ 𝑍̂𝑈𝑇(𝑠0) (2.3) 

where  𝑍̂𝐹(𝑠0) is the resulting estimated concentration in a grid cell so for the final map, 

𝑍̂𝑅(𝑠0), 𝑍̂𝑈𝐵(𝑠0) and 𝑍̂𝑈𝑇(𝑠0)
 

is the estimated concentration in a grid cell so for the rural 
background, the urban background and urban traffic map layer, respectively

 
𝑤𝑈(𝑠0)

 
is the weight representing the ratio of the urban character of the grid cell so. 

𝑤𝑇(𝑠0)
 

is the weight representing the ratio of areas exposed to traffics in a grid cell so.
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The weight wU(s0) is based on the population density, while the weight wT(s0) is based on the buffers 
around the roads (Section 3.3). For details, see Horálek et al. (2021b and references therein). 

2.2 CAMS Modelling Data Products 

The Copernicus Atmosphere Monitoring Service (CAMS) is one of six Copernicus services. CAMS 
provides a diverse range of environmental atmospheric information, which specifically includes the 
provision of air quality information at a regional scale over Europe. This European regional service is 
of specific interest for this current work. The European regional production consists of an ensemble of 
seven (resp. nine since October 2019) air quality models run operationally over the domain outlined in 
Map 2.1.  

Map 2.1. Example map showing the spatial extent of the CAMS European regional air quality domain.  

 

Each model is run by one of different European institutes. The nine different models and the institutes 
responsible for running each one are summarized in Table 2.1.  

Table 2.1. A table summarising the chemistry-transport models used in CAMS and the institutions 
responsible for running the models  

Institute Model 

INERIS, France CHIMERE 

Norwegian Meteorological Institute EMEP 

Rhenish Institute for Environmental Research at the University of Cologne, Germany EURAD 

KNMI/TNO, Netherlands LOTOS-EUROS 

Swedish Meteorological and Hydrological Institute MATCH 

Météo France MOCAGE 

Finnish Meteorological Institute SILAM 

Aarhus University, Denmark DEHM (a) 

Institute for Environmental Protection – National Research Institute, Poland GEM-AQ (a) 

(a)  Since October 2019. 
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All of the models are what are termed as chemical transport models, which means they simulate 
atmospheric chemistry but rely on an external meteorological model to provide the weather forecast 
that governs the transport of pollutants in the model. The European Center for Medium Range 
Weather Forecasts (ECMWF) provides the weather forecast for each of the regional models in CAMS, 
which ensures that each model is using the same base meteorology. For further details of each model 
please consult (Marécal et al., 2015). 

The models provide (together with other products) a 72-hour forecast made available at 07:00 UTC 
the day of the forecast. The forecast data product is available on an hourly time resolution and at a 
spatial resolution of 0.1° x 0.1°, i.e., ca. 10x10 km2. Each model forecast is combined into an ensemble 
forecast by taking the median of each of the seven (prior to October 2019) or nine (since October 2019) 
models.  

The individual forecasts from each model are available as separate products as well, but our interest 
is with the ensemble median product. Extensive validation and verification demonstrate that the 
ensemble have superior skill compared to any of the individual model ensemble members1 (Marécal 
et al., 2015). Thus, for this work, we focus on the use of the CAMS ensemble (CAMS-ENS) products. 
CAMS is currently running a dedicated project (coordinated by INERIS) to improve this Ensemble 
product using more elaborated statistical techniques (including machine learning) than this simple 
median. This improved methodology is scheduled to become operational after 2021.  

The use of the ensemble forecast in the air quality mapping means that no information from surface 
observations is contained in the modelling product. However, the ensemble analysis product is created 
by assimilating surface observations, and so the modelling product already contains some information 
from the surface station observations. In terms of the quality of the map, it causes a slight 
underestimation of the mapping uncertainty. 

In this report CAMS modelling data is used in the RIMM spatial mapping. In principle, the CAMS 
modelling data are used as the chemical transport modelling data in Equation 2.1, instead of routinely 
used EMEP modelling data. 

2.3 Pseudo station data estimation 

In order to supplement the E2a measurement data, which are affected by some spatial gaps, in the 
mapping procedure we also use data from so-called pseudo stations. These data are concentration 
estimates at the locations of stations with no E2a data for the actual year Y, but with the validated 
E1a data for the year Y-1. As recommended by Horálek et al. (2021a), these estimates are based on 
the relation between E2a data from year Y and validated E1a data from year Y-1. Based on 
preliminary analysis, next to the validated E1a data from year Y-1, also the modelling results in the 
points of these stations in years Y and Y-1 are taken into account in this estimation. Specifically, the 
ratio of the modelling CAMS-ENS Forecast data (see Section 2.2) in years Y and Y-1 are used. The 
estimates are calculated based on the equation 

𝑍̂𝑌(𝑠) =  𝑐 + 𝑎1. 𝑍𝑌−1(𝑠) + 𝑎2.
𝑀𝑌

𝑀𝑌−1
. 𝑍𝑌−1(𝑠)     (2.4) 

where 𝑍̂𝑌(𝑠) is the estimated concentration value at a station s for the year Y, 
 𝑍𝑌−1(𝑠) is the measurement value at a station s for the year Y-1, based on the E1a 

data, 
 MY(s), MY-1(s) are the modelling data at a station s for the years Y and Y-1, 
 c, a1,, a2  are the parameters of the linear regression model calculated based on the 

data at the points of all stations with measurements for both Y and Y-1 years. 

 
1 https://atmosphere.copernicus.eu/regional-services 

https://atmosphere.copernicus.eu/regional-services
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Similarly as in the case of the pseudo stations used in the regular mapping of PM2.5 (see Horálek et al., 
2021b), all background stations (either classified as rural, urban or suburban) are handled together for 
estimating values at background pseudo stations, while all traffic stations used are applied for 
estimating values at traffic pseudo stations. 

2.4 Validation 

In this report, we perform the validation of both the pseudo station estimates and the concentration 
maps. 

Pseudo stations 

The validation of the pseudo station estimates is done based on the E1a measurement data, if available 
(i.e., for 2017 data). The statistical indicators for the validation are standard error and R2. 

Concentration maps 

The validation of the concentration maps is done based on the E1a data, if available (i.e. for 2017). For 
stations with E1a data only (i.e., with no E2a data), the simple point observation – grid prediction 
validation is performed, which compares between point measurement data at stations not used in 
mapping (as they do not have E2a data) and gridded prediction values of the relevant RIMM map. 

For stations with both E2a and E1a data available, the evaluation is done using the cross-validation: it 
computes the spatial interpolation for each measurement point from all available information except 
from the point in question (i.e., it withholds one data point and then makes a prediction at the spatial 
location of that point). This procedure is repeated for all measurement points in the available set. The 
predicted and measurement E1a values at these points are compared using statistical indicators and a 
scatter plot. For 2019 maps, the cross-validation based on E2a data is performed. 

The results of both cross-validation and simple validation are described by the statistical indicators and 
scatter plots. The main indicator used is root mean squared error (RMSE) and additional is bias (mean 
prediction error, MPE): 

𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (𝑍̂(𝑠𝑖) − 𝑍(𝑠𝑖))

2
𝑁
𝑖=1      (2.5) 

𝑏𝑖𝑎𝑠(𝑀𝑃𝐸) =
1

𝑁
∑ (𝑍̂(𝑠𝑖) − 𝑍(𝑠𝑖))𝑁

𝑖=1      (2.6) 

where   𝑍(𝑠𝑖) is the air quality indicator value derived from the measured concentration at the ith 
point, i = 1, …, N, 

𝑍̂(𝑠𝑖) is the air quality estimated indicator value at the ith point using other information, 
without the indicator value derived from the measured concentration at the ith point, 

 N is the number of the measuring points. 

Next to the RMSE expressed in the absolute units, one could express this uncertainty in relative terms 
by relating the RMSE to the mean of the air pollution indicator value for all stations: 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑍
. 100       (2.7) 

where  RRMSE is the relative RMSE, expressed in percent, 
𝑍̅ is the arithmetic average of the indicator values Z(s1), …, Z(sN), as derived from 

measurement concentrations at the station points i = 1, … , N. 

Other indicators are R2 and the regression equation parameters slope and intercept, following from 
the scatter plot between the predicted (using cross-validation) and the observed concentrations. 

RMSE should be as small as possible, bias (MPE) should be as close to zero as possible, R2 should be as 
close to 1 as possible, slope a should be as close to 1 as possible, and intercept c should be as close to 
zero as possible (in the regression equation y = a.x + c). 
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3 Data Used  

3.1 Air Quality Monitoring Data  

AQ e-reporting E2a and E1a data 

For the preliminary maps, we have used air quality station monitoring data coming from the E2a data 
set of the Air Quality e-Reporting database (EEA, 2020). The data of the up-to-date (UTD) dataflow E2a 
are being provided on an hourly basis from most of the EEA’s member and cooperating countries.The 
data for 2017 was extracted by the EEA in the first half of the year 2018 and the data for 2019 was 
extracted by the EEA in February 2020.  

For the purposes of the pseudo stations calculations and for the validation of the interim maps, the 
data of the E1a data set of the Air Quality e-Reporting database (EEA, 2020) have been used. The data 
of the dataflow E1a is submitted to EEA by the reporting countries every September and covers the 
year before the delivery. This E1a data set has been supplemented with several EMEP rural stations 
from the database EBAS (NILU, 2020) not reported to the Air Quality e-Reporting database.  

For PM10 and NO2, and also for PM2.5, we use the same classification types of stations and areas as we 
do for the E2a data, i.e. stations classified as background (for the three types of area), and also traffic 
for the types of area suburban and urban. For ozone, we use only data from stations classified as 
background (for the three types of area, rural, suburban and urban). In the mapping, rural background 
stations are used for the rural layer, urban and suburban stations for the urban background layer and 
urban and suburban traffic stations for the urban traffic layer (Section 2.1). 

The following pollutants and aggregations are considered:  

PM10  – annual average [µg·m-3], years 2016 (E1a), 2017 (E1a, E2a), 2018 (E1a), 2019 (E2a)  
Ozone  – SOMO35 [µg·m-3·d], years 2016 (E1a), 2017 (E1a, E2a), 2018 (E1a), 2019 (E2a) 
NO2  – annual average [µg·m-3], years 2016 (E1a), 2017 (E1a, E2a), 2018 (E1a), 2019 (E2a) 
PM2.5  – annual average [µg·m-3], years 2016 (E1a), 2017 (E1a, E2a) 

Table 3.1 shows the number of the stations used in both mapping and validation of 2017 and 2019 
interim maps. Validation is performed in the year 2017 only, based on the E1a stations. 

Note that due to a low number of the E2a data in 2017, the PM2.5 mapping has not been performed 
(Section 4.4). Consequently, we have not prepared the PM2.5 map for 2019.  

In the RIMM mapping (as described in Section 2.1) of a year Y, E2a Y stations are used, together with 
pseudo stations derived from E1a stations of a year a Y-1. The pseudo stations are located at the places 
of the E1a Y-1 stations with no E2a data for year Y (labelled as “For pseudo Y”). The rest of the E1a Y-1 
stations (with both E1a data for Y-1 and E2a data for Y) are used for estimation of the parameters of 
the linear regression for the pseudo stations calculation (see Eq. 2.4). 
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Table 3.1 Number of stations used in interim mapping 2017 and 2019 and validation 2017 for each 
station type, for PM10 (top), NO2 (upper middle), ozone (lower middle) and PM2.5 (bottom)  

E2a 2017 E1a 2017 E2a 2019

Total For pseudo ´17 Mapping ´17 Validation ´17 Total For pseudo ´19 Mapping ´19

Rural background 351 169 193 362 386 156 237

Urban/suburban backgr. 1313 695 670 1386 1422 618 848

Urban/suburban traffic 685 358 355 746 758 287 494

E2a 2017 E1a 2017 E2a 2019

Total For pseudo ´17 Mapping ´17 Validation ´17 Total For pseudo ´19 Mapping ´19

Rural background 429 156 285 451 480 151 343

Urban/suburban backgr. 1303 491 842 1336 1381 349 1071

Urban/suburban traffic 787 302 511 975 1060 426 654

E2a 2017 E1a 2017 E2a 2019
Total For pseudo ´17 Mapping ´17 Validation ´17 Total For pseudo ´19 Mapping ´19

Rural background 531 156 375 532 551 121 440

Urban/suburban backgr. 1145 387 785 1133 1201 328 902

E2a 2017 E1a 2017

Total For pseudo ´17 Mapping ´17 Validation ´17

Rural background 195 113 90 201

Urban/suburban backgr. 631 338 323 686

Urban/suburban traffic 303 146 176 330

E1a 2016 E1a 2018

Station type E1a 2016 E1a 2018

Station type

PM2.5

E1a 2016

PM10

NO2

Ozone

Station type E1a 2016 E1a 2018

Station type

 
Maps A.1-A.3 of Annex show the spatial distribution of the rural, urban/suburban background and 
urban/suburban traffic stations used in the interim 2017 mapping (in green and orange) and validation 
(in red), for different pollutants. In all figures, the true stations (in green) and the pseudo stations (in 
orange) are distinguished. Similarly, Maps A.4-A.6 of Annex present the spatial distribution of the 
stations of the different types used in the interim 2019 mapping (in green and orange). 

3.2 Chemical transport modelling data  

CAMS Ensemble Forecast Modelling Data 

We use the CAMS Ensemble Forecast data, see Section 2.2. We have downloaded the CAMS Ensemble 
Forecast data for 2016, 2017, 2018 and 2019 from the CAMS data archive2. The modelling data have 
been downloaded in NetCDF format.  

The forecast products are available at hourly intervals and have a spatial resolution of 0.1  0.1. All of 
the models used in the CAMS ensemble products were run using the TNO-MACC emissions 
representative of 2011 (Kuenen et al., 2014). The CAMS ensemble modelling products are described 
in further detail in Section 2.2. 

All modelling data have been aggregated into the annual statistics and converted into the reference 
EEA 1x1 km2 (for PM and NO2) and 10x10 km2 (for ozone) grids. The pollutants and parameters used 
are the same as for the monitoring data. 

3.3 Other supplementary data 

Other supplementary data used are similar as in regular maps creation, Horálek et al. (2020, 2021b).  

 
2 http://www.regional.atmosphere.copernicus.eu/?category=data_access  

http://www.regional.atmosphere.copernicus.eu/?category=data_access
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Altitude 

We use the altitude data field (in m) of Global Multi-resolution Terrain Elevation Data 2010 
(GMTED2010), with an original grid resolution of 15x15 arcseconds coming from U.S. Geological Survey 
Earth Resources Observation and Science, see Danielson et al. (2011). The data were converted into 
the EEA reference grids in 1x1 km2 and 10x10 km2 resolutions, as described in Horálek et al. (2020). 
Next to this, another aggregation has been executed based on the 1x1 km2 grid cells, i.e., the floating 
average of the circle with a radius of 5 km around all relevant grid cells. 

Meteorological data 

The meteorological parameters used are wind speed (annual mean for 2017 and for 2019, in m.s-1), 
relative humidity (annual mean for 2017 and for 2019, in percent) and surface net solar radiation 
(annual mean of daily sum for 2017 and for 2019, in MWs.m-2). For 2017, the daily data in resolution 
15x15 arc-seconds were extracted from the Meteorological Archival and Retrieval System (MARS) of 
ECMWF. For 2019, the ECWMF hourly data in 0.1°x0.1° resolution extracted from the CDS (Climate 
Data Store, https://cds.climate.copernicus.eu/cdsapp#!/home) are used. The data have been 
imported into ArcGIS and converted into the reference EEA 1x1 km2 and 10x10 km2 grids.  

Satellite data 

Annual average NO2 datasets from data acquired by the Ozone Monitoring Instrument (OMI) onboard 
the Aura platform were constructed for 2017. The parameter used is the annual average tropospheric 
vertical column density (VCD) [number of NO2 molecules per cm2 of earth surface], aggregated from 
daily data. The OMI Level-3 NO2 product ”OMNO2d” was used as a basis, NASA (2020). All the orbits 
within a given day (typically observed between 13:00 and 14:00 local time) are mapped into a 
0.25°x0.25° grid resolution. For details, see Horálek et al. (2020). The data were spatially transformed 
to the reference EEA 1x1 km2 grid, like in the case of modelled data. 

For 2019 mapping, data from the TROPOspheric Monitoring Instrument (TROPOMI) onboard of the 
Sentinel-5 Precursor satellite was used. The spatial resolution of approximately 7 km by 3.5 km at nadir 
was reduced to 5.5 km by 3.5 km after August 2019. The product used is the S5P_OFFL_L2__NO2 
product (van Geffen et al., 2020) and it provides the tropospheric vertical column density of nitrogen 
dioxide (NO2), i.e., a vertically integrated value over the entire troposphere. All overpasses for a specific 
day were then mosaicked and gridded into the reference EEA 1x1 km2 grid in the ETRS89 / ETRS-LAEA 
(EPSG 3035) projection. The daily gridded files were subsequently averaged to an annual mean. 

Land cover 

CORINE Land Cover 2012 – grid 100 x 100 m2, Version 18.5 (EEA, 2016) is used for 2017 maps, while 
CORINE Land Cover 2018 – grid 100 x 100 m2, Version 2020_20 (EU, 2020) for 2019 maps. Like in 
Horálek et al. (2021b), the 44 CLC classes have been re-grouped into the 8 more general classes. In this 
paper, we use five of these general classes, namely high density residential areas (HDR), low density 
residential areas (LDR), agricultural areas (AGR), natural areas (NAT), and traffic areas (TRA). For 
details, see Horálek et al. (2021b). Two aggregations are used, i.e., into 1x1 km2 grid and into the circle 
with radius of 5 km. The aggregated grid square value represents for each general class the total area 
of this class as percentage of the total area of the 1x1 km2 square or the circle with radius of 5 km. 

Population density and Road data 

Population density (in inhabitants.km-2, census 2011) is based on Geostat 2011 grid dataset (Eurostat, 
2014). For regions not included in the Geostat 2011 dataset we use as alternative sources JRC and 
ORNL data. For details, see Horálek et al. (2021b). 

GRIP vector road type data is used (Meijer et al., 2018). Based on these data (i.e., buffers around the 
roads), traffic map layers (Section 2.1) are merged into the final maps (Horálek et al., 2021b). 

https://cds.climate.copernicus.eu/cdsapp#!/home
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4 Evaluation of Interim Air Quality Spatial Mapping for 2017 

4.1 PM10 Annual Average 

As a first step, the pseudo stations data have been estimated. The estimates have been calculated 
based on the E1a measurement data for 2016, the CAMS Ensemble Forecast modelling data for 2016 
and 2017, and the regression relation with the E2a measurement data for 2017 (see Eq. 2.4). Table 4.1 
presents the regression coefficients determined for pseudo stations data estimation, based on the 800 
rural and urban/suburban background and 327 urban/suburban traffic stations that have both E1a 
2016 and E2a 2017 measurements available (see Section 2.2).  

Table 4.1 Parameters and statistics of linear regression model for generation of pseudo PM10 data in 
rural and urban background and urban traffic areas, for PM10 annual average 2017 

c (constant) -0.3 2.6

a1 (PM10 annual mean 2016, E1a data) 0.366 0.577

a2 (PM10 annual mean 2016 * CAMS ratio 2019/2018) 0.693 0.323

Adjusted R
2 0.92 0.84

Standard Error  [µg.m
-3

] 2.1 3.1

Linear 

regression 

model (LRM,    

Eq. 2.4)

PM10

Rural and urban 

background areas

Urban traffic 

areas

 

Table 4.2 shows the validation of the pseudo stations, based on the E1a stations not included in the 
E2a data set. The validation has been performed separately for rural, urban/suburban background and 
urban/suburban traffic stations. Next to this, the validation has been executed separately for areas 
covered by the E2a data (i.e., for entire area without Italy, Bulgaria, Romania, Serbia, Baltic countries, 
Cyprus and Turkey) and not covered by the E2a data (i.e., for Italy, Bulgaria, Romania, Serbia, Baltic 
countries, Cyprus and Turkey). Additionally, for areas not covered by the E2a data, we show separately 
the urban background results for areas outside Turkey and for Turkey, due to much higher uncertainty 
for Turkey compared to the other areas (similarly like in regular maps, Horálek et al., 2020a). 

Table 4.2 Validation of pseudo PM10 data showing RMSE, RRMSE, bias, R2 and linear regression from 
validation scatter plots for rural background (top), urban/suburban background (middle) 
and urban/suburban traffic stations (bottom), PM10 annual mean 2017. Validation by E1a 
stations not used in mapping. Units: µg.m-3 except RRMSE and R2. 

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 2.9 16.5% -0.2 0.874 y = 0.874x + 2.00

Area covered by E2a data 1.8 12.4% 0.3 0.880 y = 0.961x + 0.84

Area not covered by E2a data 3.9 18.5% -0.8 0.851 y = 0.854x + 2.27

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 7.1 22.9% 0.5 0.818 y = 0.959x + 1.79

Area covered by E2a data 3.0 12.4% 0.6 0.926 y = 1.063x - 0.91

Area not covered by E2a data, no TR 3.0 11.5% -0.4 0.851 y = 0.858x + 3.33

Area not covered by E2a data, TR 14.1 27.7% 1.8 0.512 y = 0.765x + 13.83

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 4.3 16.1% -0.7 0.892 y = 0.848x + 3.32

Area covered by E2a data 2.1 10.2% 0.3 0.918 y = 0.897x + 2.41

Area not covered by E2a data 5.5 17.3% -1.6 0.860 y = 0.842x + 3.44

E1a stations not in 

E2a data set

PM10 – Rural background stations

PM10 - Urban/suburban background stations

PM10 – Urban/suburban traffic stations

E1a stations not in 

E2a data set

E1a stations not in 

E2a data set

 

Note: Areas not covered by E2a data are comprised of IT, BG, RO, RS, LT, LV, EE, CY and TR. 
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Observing the validation results, one can see that apart from the area of Turkey, the bias is mostly 
smaller than 1 µg.m-3, the R2 is higher than 0.85 and the relative uncertainty RRMSE is smaller than 
20 %, for all types of the area.  

Based on the E2a data and pseudo data, CAMS Ensemble Forecast modelling data and other 
supplementary data as used in the regular mapping, the interim PM10 annual average map for 2017 
has been created.  

Table 4.3 presents the estimated parameters of the linear regression models (c, a1, a2,…) and of 
the residual kriging (nugget, sill, range) and includes the statistical indicators of both the regression 
and the kriging of its residuals.  

Table 4.3 Parameters and statistics of linear regression model and ordinary kriging in rural, urban 
background and urban traffic areas for interim map of PM10 annual average 2017 

Rural areas Urban b. areas Urban tr.. areas 

c (constant) 5.42 1.19 2.10

a1 (log. CAMS-ENS-FC model) 0.746 0.79 0.522

a2 (altitude GMTED) -0.00025

a3 (relative humidity) n.sign.

a4 (wind speed) -0.046 -0.063

a5 (land cover NAT1) -0.0019

Adjusted R
2 0.65 0.28 0.42

Standard Error  [µg.m
-3

] 0.26 0.38 0.26

nugget 0.031 0.041 0.010

sill 0.065 0.077 0.043

range  [km] 760 740 480

RMSE  [µg.m
-3

] 4.0 3.8 4.3

Relative RMSE  [%] 26.3% 18.9% 19.5%

Bias (MPE)  [µg.m
-3

] -0.1 0.3 -0.3

Linear regresion 

model (LRM,    

Eq. 2.1)

Ordinary kriging 

(OK) of LRM 

residuals

LRM + OK of  its 

residuals

PM10

Annual average

 

Table 4.4 presents the evaluation of the interim map, based on the E1a station data not included in 
the E2a data set, for different areas types. Next to the analysis for the entire mapping area, we have 
again executed the comparison separately for two distinct areas: for areas covered and not covered 
by the E2a data. Additionally, for areas not covered by the E2a data, we show separately the urban 
results for areas outside Turkey and for Turkey, due to much higher uncertainty for Turkey compared 
to the other areas (similarly like in regular maps, Horálek et al., 2020). 

Next to the results for the final interim map, the results for the specific map layers (i.e., rural, urban 
background and urban traffic) are also presented. Note that as stated in Horálek et al. (2021b), the 
final combined map in 1x1 km2 resolution is fairly well representative for rural and urban background 
areas, but not for urban traffic areas. Thus, for urban traffic areas, results for the traffic map layer is 
decisive, while the results for the final map are presented for completeness only.   

Lower RMSE and RRMSE and higher R2 generally indicate better performance; bias closer to zero is also 
an indication of better performance. Furthermore, the slope should be as close to 1 as possible and 
the intercept as close to 0 as possible.  

Looking at the statistics, one can state that the results are quite satisfactory in general. Comparing with 
the results presented in Horálek et al. (2021a) for the interim maps without the use of the pseudo 
stations, one can see quite similar results in areas covered by the E2a data and altogether better results 
in areas not covered by the E2a data. The most remarkable improvement is in R2.  
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Table 4.4 Validation of interim RIMM spatial mapping showing RMSE, RRMSE, bias, R2 and linear 
regression from validation scatter plots for PM10 annual mean in rural background (top), 
urban background (middle) and urban traffic areas (bottom), 2017. Cross-validation and  
validation by E1a stations not used in mapping. Units: µg.m-3 except RRMSE and R2. 

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Rural map layer 2.5 16.8% 0.1 0.739 y = 0.697x + 4.58

Rural map layer 3.4 20.1% -0.2 0.837 y = 0.746x + 4.15

Final merged map 4.9 29.0% 1.0 0.694 y = 0.861x + 3.33

Rural map layer 2.6 17.8% 0.4 0.797 y = 0.793x + 3.34

Final merged map 2.8 19.4% 0.9 0.784 y = 0.839x + 3.19

Rural map layer 4.4 21.0% -1.0 0.819 y = 0.839x + 3.19

Final merged map 7.1 33.6% 1.1 0.580 y = 0.819x + 4.5

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Urban b.  map layer 3.6 17.9% 0.5 0.764 y = 0.807x + 4.40

Urban b.  map layer 8.4 28.0% -0.4 0.686 y = 0.675x + 9.35

Final merged map 8.7 29.2% -0.7 0.660 y = 0.673x + 9.13

Urban b.  map layer 4.3 17.8% -0.2 0.800 y = 0.781x + 5.14

Final merged map 4.4 18.1% -0.4 0.796 y = 0.775x + 5.13

Urban b.  map layer 5.1 19.2% -0.1 0.612 y = 0.663x + 8.75

Final merged map 5.3 20.0% -0.7 0.594 y = 0.678x + 7.81

Urban b.  map layer 16.9 33.5% -1.3 0.171 y = 0.186x + 39.70

Final merged map 17.7 35.1% -1.2 0.110 y = 0.156x + 41.24

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Urban tr.  map layer 3.9 17.6% -0.4 0.763 y = 0.681x + 6.58 

Urban tr.  map layer 4.8 18.5% -0.6 0.849 y = 0.775x + 5.32

Final merged map 6.5 25.1% -3.1 0.775 y = 0.754x + 3.32

Urban tr.  map layer 3.3 16.5% 0.1 0.595 y = 0.697x + 6.52

Final merged map 5.3 26.1% -3.0 0.515 y = 0.720x + 2.82

Urban tr.  map layer 5.9 18.7% -1.1 0.820 y = 0.721x + 7.66

Final merged map 7.5 23.8% -3.3 0.749 y = 0.651x + 7.77

E1a stations not 

in E2a data set

Entire area
Simple grid 

validation

Area covered by 

E2a data

Simple grid 

validation

Area not covered 

by E2a data

Simple grid 

validation

Simple grid 

validation

Area not covered 

by E2a data, no TR

E1a stations in 

E2a set 

Area covered by 

E2a data

Cross-

validation

PM10 – Rural background areas

PM10 – Urban background areas

PM10 – Urban traffic areas

E1a stations not 

in E2a data set

E1a stations in 

E2a set 

E1a stations not 

in E2a data set

Area not covered 

by E2a data, TR

Area covered by 

E2a data

Simple grid 

validation

Area covered by 

E2a data

Simple grid 

validation

Simple grid 

validation

Area not covered 

by E2a data

Cross-

validation

Entire area

Simple grid 

validation

E1a stations in 

E2a set 

Area covered by 

E2a data

Cross-

validation

Entire area
Simple grid 

validation

Area covered by 

E2a data

Simple grid 

validation

 

Note: Areas not covered by E2a data are comprised of IT, BG, RO, RS, LT, LV, EE, CY and TR. 

Map 4.1 presents the final merged interim map of the PM10 annual average for 2017.  

Map 4.2 shows difference map between the interim map and the reference map (Horálek et al., 2020). 

From Map 4.2, one can see overall agreement of the two maps (i.e. the interim and regular ones), with 
regional differences in some areas, including Hungary, Spain, Poland and Turkey. The differences are 
partly caused by changes in the measurement data coverage, partly by the different model used (i.e. 
CAMS Ensemble Forecast instead of EMEP). Compared with the results presented in Horálek et al. 
(2021a), one can see an improvement in areas poorly covered by the E2a stations (namely in Balkan, 
Italy and Scandinavia). 
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Map 4.1 Interim concentration map of PM10 annual average, 2017, RIMM methodology using E2a 
(UTD) measurement data, pseudo data and CAMS-ENS Forecast model output 

 

Map 4.2 Difference map of PM10 annual average, 2017, interim map using E2a measurement, pseudo 
data and CAMS-ENS Forecast model data minus reference map using E1a measurement and 
EMEP model data 

 
It can be concluded that the uncertainty of the map (see the relative uncertainty expressed as RRMSE, 
Table 4.4) is low enough to enable the interim map construction (e.g., it fulfils the data quality 
objectives for models as set in the AQ Directive, EC, 2008). However, two notes should be made.  

The first comment is that for the area of Turkey (covered with no E2a data) the uncertainty results for 
urban background areas still are not satisfactory (see R2 lower than 0.2), although the results are better 
compared to those of Horálek et al (2021a). Also, only few pseudo stations are available for rural and 
traffic areas. This leads to the recommendation not to present the interim mapping results for the area 
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of Turkey, for the time being. Second, slightly higher bias compared to the regular map can be seen for 
the most types of areas. This should not be a problem for the mapping itself, however, together with 
a regional variability compared to the regular mapping, it leads to the recommendation concerning 
the population exposure (not examined in this report), which are more sensitive to any bias: the 
population exposure estimates should be not be routinely calculated before being properly analysed.  

4.2 NO2 Annual Average 

Like for PM10, we have performed the analysis for the interim NO2 annual average 2017 map creation. 

At first, the pseudo stations data have been estimated, based on the E1a measurement data for 2016, 
the CAMS Ensemble Forecast modelling data for 2016 and 2017, and the regression relation with the 
E2a measurement 2017 data. It should be noted that based on the preliminary analysis (not presented 
here), it seems that, instead of the CAMS modelling data, the OMNO2 satellite data (for 2016 and 
2017) might be used alternatively for the pseudo data estimates. 

Table 4.5 presents the regression coefficients determined for pseudo stations data estimation, based 
on the 1085 rural and urban/suburban background and 485 urban/suburban traffic stations that have 
both E1a 2016 and E2a 2017 measurements available (Section 2.2). R2 above 0.9 means a good relation. 

Table 4.5 Parameters and statistics of linear regression model for generation of pseudo NO2 data in 
rural and urban background and urban traffic areas, for NO2 annual average 2017 

c (constant) -0.1 2.0

a1 (NO2 annual mean 2016, E1a data) 0.650 0.670

a2 (NO2 annual mean 2016 * CAMS ratio 2017/2016) 0.344 0.237

Adjusted R
2 0.95 0.93

Standard Error  [µg.m
-3

] 1.8 3.3

Linear 

regression 

model (LRM,    

Eq. 2.4)

NO2

Rural and urban 

background areas

Urban traffic 

areas

 

Table 4.6 shows the validation of the pseudo data, using E1a stations not included in the E2a data set. 

Table 4.6 Validation of pseudo NO2 data showing RMSE, RRMSE, bias, R2 and linear regression from 
validation scatter plots for rural background (top), urban/suburban background (middle) 
and urban/suburban traffic stations (bottom), NO2 annual mean 2017. Validation by E1a 
stations not used in mapping. Units: µg.m-3 except RRMSE and R2. 

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 1.5 14.3% -0.5 0.963 y = 0.950x + 0.07

Area covered by E2a data 1.0 12.1% -0.3 0.980 y = 0.937x + 0.27

Area not covered by E2a data 1.7 14.8% -0.6 0.954 y = 0.959x - 0.09

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 8.0 33.9% -0.1 0.679 y = 0.973x + 0.50

Area covered by E2a data 2.0 11.0% -0.1 0.907 y = 0.922x + 1.27

Area not covered by E2a data, no TR 3.4 14.6% -1.1 0.862 y = 0.908x + 1.05

Area not covered by E2a data, TR 3.7 55.5% 3.7 0.365 y = 0.869x + 8.34

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 5.9 17.0% 1.0 0.843 y = 0.823x + 5.12

Area covered by E2a data 3.0 10.3% 0.3 0.919 y = 0.898x + 3.33

Area not covered by E2a data 6.9 18.4% -1.7 0.817 y = 0.813x + 5.29

E1a stations not in 

E2a data set

NO2 – Rural background stations

NO2 - Urban/suburban background stations

NO2 – Urban/suburban traffic stations

E1a stations not in 

E2a data set

E1a stations not in 

E2a data set

 

Note: Areas not covered by E2a data are comprised of IT, BG, RO, RS, CY and TR. 
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Looking at the validation results, one can see that apart from the area of Turkey, the bias is mostly 
smaller than 1 µg.m-3, the R2 is higher than 0.85 and the relative uncertainty RRMSE is smaller than 
20 %, for all types of the area. The pseudo data show quite similar uncertainty for NO2 as for PM10. 

Based on the E2a data and pseudo data, CAMS Ensemble Forecast modelling data and other 
supplementary data as used in the regular mapping, the interim NO2 annual average map for 2017 has 
been created.  

Table 4.7 presents the estimated parameters of the linear regression models (c, a1, a2,…) and of 
the residual kriging (nugget, sill, range) and includes the statistical indicators of both the regression 
and the kriging of its residuals.  

Table 4.7 Parameters and statistics of linear regression model and ordinary kriging in rural, urban 
background and urban traffic areas for interim map of NO2 annual average 2017 

Rural areas Urb. b. areas Urb. tr. areas 

c (constant) 6.7 22.1 26.11
a1 (CAMS-ENS-FC model) 0.651 0.581 0.562
a2 (satellite OMNO2) 0.35 n. sign. n. sign.
a3 (altitude) -0.0101 n. sign. n. sign.
a4 (altitude_5km_radius) 0.0101 n. sign. n. sign.
a5 (wind speed) -0.86 -2.576 -1.699
a7 (population*1000) 0.00236 0.00032

a8 (NAT_1km) -0.0725

a9 (AGR_1km) -0.0336

a10 (TRAF_1km) 0.1008

a11 (LDR_5km_radius) 0.0681 n. sign. 0.2018

a12 (HDR_5km_radius) 0.1180 0.2953

a13 (NAT_5km_radius) -0.0368

Adjusted R
2 0.80 0.39 0.37

Standard Error  [µg.m
-3

] 2.6 7.9 10.0

nugget 6 22 48

sill 6 26 87

range  [km] 170 90 350

RMSE  [µg.m
-3

] 2.3 4.4 8.2

Relative RMSE  [%] 27.1% 22.6% 24.7%

Bias (MPE)  [µg.m
-3

] 0.0 -0.1 0.0

Ordinary kriging 

(OK) of LRM 

residuals

LRM + OK of  its 

residuals

Annual average
NO2

Linear 

regresion model 

(LRM,    Eq. 2.1)

 

Table 4.8 presents the evaluation of the interim map, based on the E1a station data not included in 
the E2a data set, for different areas types. Like for PM10, next to the analysis for the entire mapping 
area, separate comparison for two distinct areas we have been executed: first, for areas covered by 
E2a data (i.e., without Italy, Bulgaria, Romania, Serbia, Cyprus and Turkey) and for areas not covered 
by the E2a data (i.e., for Italy, Bulgaria, Romania, Serbia, Cyprus and Turkey). Like in the case of PM10 
and in Horálek et al. (2021a), for urban background areas not covered by the E2a data, we present the 
results separately for areas outside Turkey and for Turkey. 

The uncertainty results are quite satisfactory in general. Rural areas show somewhat poorer results 
compared to the urban background and urban traffic areas, however be it noted that this relative 
uncertainty is influenced by a low concentration level in rural areas. Similarly like in the case of PM10, 
large uncertainty can be seen for the urban areas of Turkey (with no E2a data), namely in terms of bias.  

Comparing the results with the ones presented in Horálek et al. (2021a) for the interim maps without 
the use of the pseudo stations, one can see an improvement in urban areas not covered by the E2a 
data, namely in terms of bias and R2. 
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Table 4.8 Validation of interim RIMM spatial mapping showing RMSE, RRMSE, bias, R2 and linear 
regression from validation scatter plots for NO2 annual mean 2017 in rural background (top), 
urban background (middle) and urban traffic areas (bottom). Cross-validation and  
validation by E1a stations not used in mapping. Units: µg.m-3 except RRMSE and R2. 

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Rural map layer 2.2 26.2% 0.0 0.796 y = 0.814x + 1.56

Rural map layer 2.9 32.8% -0.3 0.839 y = 0.790x + 1.55

Final merged map 4.4 50.0% 0.7 0.663 y = 0.816x + 2.36

Rural map layer 2.2 34.0% -0.2 0.876 y = 0.852x + 0.79

Final merged map 2.5 38.3% 0.1 0.842 y = 0.879x + 0.90

Rural map layer 3.4 31.2% -0.4 0.790 y = 0.725x + 2.56

Final merged map 5.6 51.4% 1.3 0.510 y = 0.701x + 4.52

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Urban b.  map layer 4.3 22.1% -0.1 0.664 y = 0.714x + 5.53

Urban b.  map layer 7.5 33.3% 0.6 0.565 y = 0.620x + 9.16

Final merged map 7.9 35.4% 0.4 0.531 y = 0.660x + 7.97

Urban b.  map layer 3.8 21.8% 0.6 0.686 y = 0.666x + 6.52

Final merged map 4.1 23.3% 1.1 0.666 y = 0.742x + 5.73

Urban b.  map layer 6.2 27.7% -0.4 0.563 y = 0.517x + 10.45

Final merged map 6.8 30.2% -1.2 0.503 y = 0.577x + 8.22

Urban b.  map layer 15.4 44.9% 5.6 0.317 y = 0.296x + 29.79

Final merged map 16.1 46.7% 6.2 0.279 y = 0.319x + 29.59

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Urban tr.  map layer 8.2 24.5% -0.2 0.551 y = 0.560x + 14.56

Urban tr.  map layer 7.9 22.1% -1.1 0.669 y = 0.599x + 13.21

Final merged map 14.5 40.8% 3.4 0.564 y = 0.485x + 6.89

Urban tr.  map layer 6.7 19.3% -0.5 0.666 y = 0.642x + 11.93

Final merged map 14.3 41.4% -12.0 0.579 y = 0.430x + 7.71

Urban tr.  map layer 9.0 24.5% -1.9 0.676 y = 0.572x + 13.92

Final merged map 14.8 40.2% -10.8 0.565 y = 0.510x + 7.22

E1a stations 

not in E2a data 

set

Entire area
Simple grid 

validation

Area covered by 

E2a data

Simple grid 

validation

Area not covered 

by E2a data

Simple grid 

validation

E1a stations in 

E2a set 

Area covered by 

E2a data

Cross-

validation

NO2 – Rural background areas

NO2 – Urban background areas

NO2 – Urban traffic areas

E1a stations 

not in E2a data 

set

E1a stations in 

E2a set 

Cross-

validation

Entire area

E1a stations 

not in E2a data 

set

Area not covered 

by E2a data, TR

Area covered by 

E2a data

Simple grid 

validation

Area covered by 

E2a data

Simple grid 

validation

Simple grid 

validation

Area not covered 

by E2a data

Simple grid 

validation

Area not covered 

by E2a data, no TR

Simple grid 

validation

E1a stations in 

E2a set 

Area covered by 

E2a data

Cross-

validation

Entire area
Simple grid 

validation

Area covered by 

E2a data

Simple grid 

validation

 

Note: Areas not covered by E2a data are comprised of IT, BG, RO, RS, CY and TR. 

 

Map 4.3 presents the final merged interim map of the NO2 annual average for 2017. 
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Map 4.3 Interim concentration map of NO2 annual average, 2017, RIMM methodology using E2a 
(UTD) measurement data, pseudo data and CAMS-ENS Forecast model output 

 

Map 4.4 shows difference maps between the interim map and the reference map (Horálek et al., 2020). 
The differences are not so distinct as in the case of PM10. The main differences are in the urban areas 
of Turkey.  

Map 4.4 Difference map of NO2 annual average, 2017, interim map using E2a measurement, pseudo 
data and CAMS-ENS Forecast model data minus reference map using E1a measurement and 
EMEP model data 

 
 

It can be concluded that the interim mapping of NO2 is possible, apart from the area of Turkey (covered 
with no E2a data, showing high uncertainty), which is recommended not to map at this stage. 
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4.3 Ozone – SOMO35 

The interim mapping for ozone based on the E2a measurement and CAMS modelling data is examined 
in this paper for the first time: In contrast to PM10 and NO2, it was not tested in Horálek et al. (2020a).  

At first, the pseudo stations data have been estimated, based on the E1a measurement data for 2016, 
the CAMS Ensemble Forecast modelling data for 2016 and 2017, and the regression relation with the 
E2a measurement data for 2017. Table 4.9 gives the regression coefficients determined for pseudo 
stations data estimation, based on the 1133 rural and urban/suburban background stations that have 
both E1a 2016 and E2a 2017 measurements available (see Section 2.2). Next to this, it presents the 
statistics showing the tentative quality of the estimate.  

Table 4.9 Parameters and statistics of linear regression model for generation of pseudo ozone data 
in rural and urban background and urban traffic areas, for ozone indicator SOMO35, 2017 

c (constant) 330.4

a1 (O3 SOMO35 2016, E1a data)

a2 (O3 SOMO35 * CAMS ratio 2017/2016) 0.811

Adjusted R
2 0.85

Standard Error  [µg.m
-3

] 835.8

Linear 

regression 

model (LRM,    

Eq. 2.4)

Ozone
Rural and urban 

background areas

 

Table 4.10 shows the validation of the pseudo data, using E1a stations not included in the E2a data set, 
for different types of area. Again, next to the analysis for the entire mapping area, separate comparison 
for two distinct areas we have been executed: first, for areas covered by E2a data (i.e., without Italy, 
Bulgaria, Romania, Serbia, Cyprus and Turkey) and for areas not covered by the E2a data (i.e., for Italy, 
Bulgaria, Romania, Serbia, Cyprus and Turkey). Like in the case of PM10 and NO2, for urban background 
areas not covered by the E2a data, we present the results separately for areas outside Turkey and for 
Turkey. 

Table 4.10 Validation of pseudo ozone data showing RMSE, RRMSE, bias, R2 and linear regression 
from validation scatter plots for rural background (top) and urban/suburban background 
stations (bottom), ozone indicator SOMO35, 2017. Validation by E1a stations not used in 
mapping. Units: µg.m-3.d except RRMSE and R2. 

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 1805 23.6% -111 0.757 y = 0.999x - 103

Area covered by E2a data 1672 30.3% -335 0.718 y = 0.770x + 933

Area not covered by E2a data 1860 21.7% -13 0.724 y = 1.082x - 715

Validation set Area RMSE RRMSE Bias  R
2

Regr. eq.

Entire area 1854 35.3% 173 0.712 y = 0.925x + 568

Area covered by E2a data 1146 34.4% -25 0.762 y = 0.797x + 651

Area not covered by E2a data, no TR 2006 30.6% 117 0.634 y = 0.987x + 204

Area not covered by E2a data, TR 2209 105.1% 964 0.472 y = 0.745x + 1500

O3 – Rural background stations

O3 - Urban/suburban background stations

E1a stations not in 

E2a data set

E1a stations not in 

E2a data set

 

Note: Areas not covered by E2a data are comprised of IT, BG, RO, RS, CY and TR. 

Looking at the validation results, one can see that the ozone pseudo data estimates are poorer, 
compared to both PM10 and NO2 pseudo data. Apart from the area of Turkey, the R2 is in between 0.6 
and 0.8, while the relative uncertainty RRMSE is in between 20 % and 35 %. Nevertheless, we have 
further used the pseudo data estimates, due to the reasonable small bias (in between -6 % and 4 % in 
relative numbers, apart from Turkey). 
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Based on the E2a data and pseudo data, CAMS Ensemble Forecast modelling data and other 
supplementary data as used in the regular mapping, the interim map of the ozone indicator SOMO35 
for 2017 has been created.  

Table 4.11 presents the estimated parameters of the linear regression models (c, a1, a2,…) and of 
the residual kriging (nugget, sill, range) and includes the statistical indicators of both the regression 
and the kriging of its residuals.  

Table 4.11 Parameters and statistics of linear regression model and ordinary kriging in rural and 
urban background for interim map of ozone indicator SOMO35 for 2017 

Rural areas Urban areas 

c (constant) -229 28702

a1 (CAMS-ENS-FC model) 0.85 0.56

a2 (altitude GMTED) 3.28

a3 (wind speed) -218.07

a4 (s. solar radiation) n. sign.

a5 (relative humidity) -2.854

Adjusted R
2 0.63 0.56

Standard Error [µg.m
-3

.d] 1693 1527

nugget 2.2E+06 8.0E+05

sill 2.4E+06 1.6E+06

range  [km] 670 70

RMSE  [µg.m
-3

.days] 1285 1054

Relative RMSE  [%] 27.3% 26.9%

Bias (MPE) [µg.m
-3

.d] 1 -1

SOMO35

Linear regresion 

model (LRM,      

Eq. 2.1)

Ord. krig. (OK) of 

LRM residuals

LRM + OK of  its 

residuals

Ozone

 

Table 4.12 presents the evaluation of the interim map, based on the E1a station data not included in 
the E2a data set, for different areas types.  

Table 4.12 Validation of interim RIMM spatial mapping showing RMSE, RRMSE, bias, R2 and linear 
regression from validation scatter plots for ozone indicator SOMO35 for 2017 in rural 
background (top) and urban background (bottom). Cross-validation and  validation by E1a 
stations not used in mapping. Units: µg.m-3 except RRMSE and R2. 

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Rural map layer 1285 27.4% 1 0.720 y = 0.737x + 1269

Rural map layer 2228 30.7% -641 0.593 y = 0.492x + 3044

Final merged map 2299 31.7% -829 0.581 y = 0.509x + 2736

Rural map layer 1432 27.8% -242 0.781 y = 0.659x + 1515

Final merged map 1545 30.0% -345 0.738 y = 0.659x + 1414

Rural map layer 2549 30.5% -851 0.325 y = 0.272x + 5234

Final merged map 2609 31.2% -1084 0.333 y = 0.321x + 4591

Validation set Area Type of valid. Type of map RMSE RRMSE Bias  R
2

Regr. eq.

Urban b.  map layer 1008 25.9% 11 0.741 y = 0.756x + 962

Urban b.  map layer 1927 37.3% -518 0.653 y = 0.556x + 1775

Final merged map 1911 37.0% -325 0.635 y = 0.567x + 1911

Urban b.  map layer 1132 33.5% -51 0.777 y = 0.619x + 1239

Final merged map 1063 31.4% 34 0.801 y = 0.656x + 1199

Urban b.  map layer 2141 33.3% -935 0.517 y = 0.511x + 2205

Final merged map 2138 33.3% -675 0.464 y = 0.488x + 2613

Urban b.  map layer 2160 113.5% 880 0.235 y = 0.280x + 2350

Final merged map 2155 112.3% 948 0.274 y = 0.319x + 2339

Area not covered 

by E2a data, no TR

Simple grid 

validation

Entire area
Simple grid 

validation

Area covered by 

E2a data

Simple grid 

validationE1a stations 

not in E2a data 

set

Area not covered 

by E2a data, TR

Simple grid 

validation

Simple grid 

validation

Simple grid 

validation

Area not covered 

by E2a data

E1a stations in 

E2a set 

Area covered by 

E2a data

Cross-

validation

O3 – Rural background areas

O3 – Urban background areas

E1a stations 

not in E2a data 

set

E1a stations in 

E2a set 

Cross-

validation

Entire area

Area covered by 

E2a data

Simple grid 

validation

Area covered by 

E2a data

 

Note: Areas not covered by E2a data are comprised of IT, BG, RO, RS, CY and TR. 
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Examining the validation statistics, one can see somewhat poorer results compared to both PM10 and 
NO2. Specifically, the areas not covered by the E2a data show the underestimation of the final map of 
almost 1100 µg.m-3·d in the rural areas and 900 µg.m-3·d in the urban areas apart from Turkey, what is 
-13 % and -11 % in relative numbers. The urban area of Turkey again show the highest uncertainty. 

Map 4.5 presents the final merged interim map of the ozone indicator SOMO35 for 2017. 

Map 4.5 Interim concentration map of ozone indicator SOMO35, 2017, RIMM methodology using E2a 
(UTD) measurement data, pseudo data and CAMS-ENS Forecast model output 

 

Map 4.6 shows difference maps between the interim map and the reference map (Horálek et al., 2020). 
It can be seen that the differences take place especially in areas with a low coverage of the E2a data 
(Turkey, Balkan, Italy, Scandinavia). Differences in Scandinavia are caused by differences in EMEP and 
CAMS-ENS Forecast models together with a different relation with altitude in the linear regression 
model, while the differences in Italy, Balkan and Turkey are caused by the bias of the pseudo stations. 

It can be concluded that the interim mapping is possible in areas covered by the E2a data. The area of 
Turkey should not be mapped in the current stage of the E2a (UTD) data coverage. Concerning other 
areas poorly covered by the E2a data, the current interim mapping leads into a bias, in average to the 
underestimation of cc 10-15 %, both in the rural and the urban background areas. Further examination 
is recommended, together with a checking of the actual E2a data coverage. 
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Map 4.6 Difference map of ozone indicator SOMO35, 2017, interim map using E2a measurement, 
pseudo data and CAMS-ENS Forecast model data minus reference map using E1a 
measurement and EMEP model data 

 

4.4 PM2.5 Annual Average 

We have briefly checked the possibility to prepare the interim map for PM2.5. However, we have 
faced a limitation of a low number of the stations with the E2a data, specifically in the rural areas. 
For the numbers of the stations, see Table 3.2. Next to this, these stations are distributed irregularly, 
with considerable gaps in large parts of Europe. Map 4.7 shows the rural and urban/suburban 
background stations with the E2a data available. Note that potential pseudo station estimates would 
have to be derived out of these stations, which would lead to considerable uncertainties. 

Due to the low number of the E2a data, we have decided not to perform this mapping for this year.  

Map 4.7 Spatial distribution of PM2.5 background stations to be potentially used in mapping, 2017 
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5 Interim Air Quality Spatial Maps for 2019 

In this chapter, we present the interim maps 2019, created primarily based on the E2a measurement 
data for 2019 and the CAMS-Ensemble Forecast modelling data for 2019. Contrary to the maps for 
2017 as presented in Chapter 4, no validation based on the validated E1a measurement data has been 
performed, as the E1a data for 2019 were not available in the time designated for this study. 

5.1 PM10 Annual Average 

Like for 2017, the pseudo stations data have been estimated at first. The estimates have been 
calculated based on the E1a measurement data for 2018, the CAMS Ensemble Forecast modelling data 
for 2018 and 2019, and the regression relation with the E2a measurement data for 2019. Table 5.1 
presents the regression coefficients determined for pseudo stations data estimation, based on the 
1034 rural and urban/suburban background and 471 urban/suburban traffic stations that have both 
E1a 2018 and E2a 2019 measurements available (see Section 3.1). Next to this, it presents the statistics 
showing the tentative quality of the estimate.  

Table 5.1 Parameters and statistics of linear regression model for generation of pseudo PM10 data in 
rural and urban background and urban traffic areas, for PM10 annual average 2019 

c (constant) 1.3 2.0

a1 (PM10 annual mean 2018, E1a data) 0.179 0.431

a2 (PM10 annual mean 2018 * CAMS ratio 2019/2018) 0.712 0.413

Adjusted R
2 0.89 0.88

Standard Error  [µg.m
-3

] 2.1 2.2

Linear 

regression 

model (LRM,    

Eq. 2.4)

PM10

Rural and urban 

background areas

Urban traffic 

areas

 

Based on the E2a data and pseudo data, CAMS Ensemble Forecast modelling data and other 
supplementary data as used in the regular mapping, the interim PM10 annual average map for 2019 
has been created. Table 5.2 presents the estimated parameters of the linear regression models (c, a1, 
a2,…) and of the residual kriging (nugget, sill, range) and includes the statistical indicators of both the 
regression and the kriging of its residuals.  

Table 5.2 Parameters and statistics of linear regression model and ordinary kriging in rural, urban 
background and urban traffic areas for interim map of PM10 annual average 2019 

Rural areas Urban b. areas Urban tr.. areas 

c (constant) 1.66 0.89 1.74

a1 (log. CAMS-ENS FC model) 0.727 0.86 0.587

a2 (altitude GMTED) -0.00024

a3 (relative humidity) -0.00059

a4 (wind speed) -0.656 -0.042

a5 (land cover NAT1) -0.0015

Adjusted R
2 0.63 0.39 0.46

Standard Error  [µg.m
-3

] 0.23 0.31 0.23

nugget 0.022 0.017 0.013

sill 0.045 0.053 0.032

range  [km] 620 270 360

RMSE  [µg.m
-3

] 2.7 3.4 3.7

Relative RMSE  [%] 18.6 17.3 17.5

Bias (MPE)  [µg.m
-3

] 0.0 0.0 -0.3

R
2
 of cross.-val. regr. equation 0.73 0.70 0.67

Slope of cross-val. regr. equation 0.72 0.76 0.68

Intercept of cross-val. regr. equation 4.2 4.7 6.5

Linear regresion 

model (LRM,    

Eq. 2.1)

Ordinary kriging 

(OK) of LRM 

residuals

LRM + OK of  its 

residuals

PM10

Annual average
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Map 5.1 presents the final merged interim map of the PM10 annual average for 2019. 

Map 5.1 Interim concentration map of PM10 annual average, 2019, RIMM methodology using E2a 
(UTD) measurement data, pseudo data and CAMS-ENS Forecast model output 

 

5.2 NO2 Annual Average 

As a first step for the interim NO2 annual average 2019 map creation, the pseudo stations data have 
been estimated, based on the E1a measurement data for 2018, the CAMS Ensemble Forecast 
modelling data for 2018 and 2019, and the regression relation with the E2a measurement 2019 data. 
Table 5.3 presents the regression coefficients determined for pseudo stations data estimation, based 
on the 1361 rural and urban/suburban background and 634 urban/suburban traffic stations that have 
both E1a 2018 and E2a 2019 measurements available (see Section 3.1). Apart from this, it gives the 
statistics showing the tentative quality of the estimate. 

Table 5.3 Parameters and statistics of linear regression model for generation of pseudo NO2 data in 
rural and urban background and urban traffic areas, for NO2 annual average 2019 

c (constant) -0.1 1.8

a1 (NO2 annual mean 2018, E1a data) 0.868 0.866

a2 (NO2 annual mean 2018 * CAMS ratio 2019/2018) 0.086 n. sign.

Adjusted R
2 0.95 0.91

Standard Error  [µg.m
-3

] 1.6 3.1

Linear 

regression 

model (LRM,    

Eq. 2.4)

NO2

Rural and urban 

background areas

Urban traffic 

areas

 

Based on the E2a data and pseudo data, CAMS Ensemble Forecast modelling data and other 
supplementary data as used in the regular mapping, the interim NO2 annual average map for 2019 has 
been created. Compared to the 2017 maps, for 2019, Sentinel-5P satellite data have been used instead 
of the OMI satellite data, in agreement with the development in the regular mapping. 

Table 5.4 presents the estimated parameters of the linear regression models (c, a1, a2,…) and of 
the residual kriging (nugget, sill, range) and includes the statistical indicators of both the regression 
and the kriging of its residuals.  
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Table 5.4 Parameters and statistics of linear regression model and ordinary kriging in rural, urban 
background and urban traffic areas for interim map of NO2 annual average 2019 

Rural areas Urb. b. areas Urb. tr. areas 

c (constant) 4.6 15.9 23.00

a1 (CAMS-ENS-FC model) 0.582 0.192 n.sign.

a6 (satellite Sentinel-5P) 0.91 1.593 2.035

a2 (altitude) -0.0071 n.sign. n.sign.

a3 (altitude_5km_radius) 0.0067 n.sign. n.sign.

a4 (wind speed) -0.64 -1.964 -1.631

a7 (population*1000) 0.00157 0.00021

a8 (NAT_1km) -0.0535

a9 (AGR_1km) -0.0452

a10 (TRAF_1km) 0.0640

a11 (LDR_5km_radius) n.sign. n.sign. 0.1407

a12 (HDR_5km_radius) 0.0905 0.3011

a13 (NAT_5km_radius) -0.0250

Adjusted R
2 0.77 0.52 0.38

Standard Error  [µg.m
-3

] 2.4 5.2 8.5

nugget 2 13 35

sill 2 18 832

range  [km] 14 90 130

RMSE  [µg.m
-3

] 2.2 4.0 7.4

Relative RMSE  [%] 27.7 22.7 25.5

Bias (MPE)  [µg.m
-3

] -0.1 0.0 0.2

R
2
 of cross.-val. regr. equation 0.79 0.64 0.50

Slope of cross-val. regr. equation 0.79 0.66 0.54

Intercept of cross-val. regr. equation 1.5 5.9 13.4

Ordinary kriging 

(OK) of LRM 

residuals

LRM + OK of  its 

residuals

Annual average
NO2

Linear 

regresion model 

(LRM,    Eq. 2.1)

 
 

Map 5.2 presents the final merged interim map of the NO2 annual average for 2019. 

Map 5.2 Interim concentration map of NO2 annual average, 2019, RIMM methodology using E2a 
(UTD) measurement data, pseudo data and CAMS-ENS Forecast model output  
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5.3 Ozone – SOMO35 

At first, the pseudo stations data have been estimated, based on the E1a measurement data for 2018, 
the CAMS Ensemble Forecast modelling data for 2018 and 2019, and the regression relation with the 
E2a measurement data for 2019. Table 5.5 gives the regression coefficients determined for pseudo 
stations data estimation, based on the 1303 rural and urban/suburban background stations that have 
both E1a 2018 and E2a 2019 measurements available (see Section 3.1). Next to this, it presents the 
statistics showing the tentative quality of the estimate. Be it noted that the R2 of 0.77 means quite a 
poor relation (it is the weakest regression relation of the pseudo data estimates in this paper). 

Table 5.5 Parameters and statistics of linear regression model for generation of pseudo ozone data 
in rural and urban background and urban traffic areas, for ozone indicator SOMO35, 2019 

c (constant) 21.7

a1 (O3 SOMO35 2018, E1a data) 0.314

a2 (O3 SOMO35 * CAMS ratio 2019/2018) 0.591

Adjusted R
2 0.77

Standard Error  [µg.m
-3

] 1046.4

Linear 

regression 

model (LRM,    

Eq. 2.4)

Ozone
Rural and urban 

background areas

 

Based on the E2a data and pseudo data, CAMS Ensemble Forecast modelling data and other 
supplementary data as used in the regular mapping, the interim map of the ozone indicator SOMO35 
for 2019 has been created. Due to the increasing data coverage of the E2a data and the weak estimate 
of the pseudo data, we have additionally prepared also the SOMO35 interim map for 2019 based on 
the E2a data (and supplementary data) only, without the use of the pseudo data.  

Table 5.6 presents the estimated parameters of the linear regression models (c, a1, a2,…) and of 
the residual kriging (nugget, sill, range) and includes the statistical indicators of both the regression 
and the kriging of its residuals, for both map variants. 

Table 5.6 Parameters and statistics of linear regression model and ordinary kriging in rural and 
urban background areas for interim map of ozone indicator SOMO35 for 2019 

Rural areas Urban areas Rural areas Urban areas 

c (constant) 1034 2734 21 2494

a1 (CAMS-ENS-FC model) 0.76 0.62 1.01 0.81

a2 (altitude GMTED) 2.79 3.08

a3 (wind speed) -415.2 -548.7

a4 (s. solar radiation) n. sign. n.sign. n. sign. n.sign.

Adjusted R
2 0.43 0.29 0.64 0.49

Standard Error [µg.m
-3

.d] 1894 1878 1418 1441

nugget 1.7E+06 1.4E+06 1.4E+06 8.2E+05

sill 1.2E+06 6.9E+05 4.7E+05 4.9E+05

range  [km] 190 290 420 230

RMSE  [µg.m
-3

.days] 1481 1209 1344 1173

Relative RMSE  [%] 25.4 25.1 23.1 24.4

Bias (MPE) [µg.m
-3

.d] -95 -63 8 8

R
2
 of cross.-val. regr. equation 0.61 0.63 0.68 0.65

Slope of cross-val. regr. equation 0.58 0.60 0.67 0.66

Intercept of cross-val. regr. equation 2336 1900 1911 1662

Linear regresion 

model (LRM,      

Eq. 2.1)

Ord. krig. (OK) of 

LRM residuals

LRM + OK of  its 

residuals

Ozone Using pseudo stations Without pseudo stations

SOMO35

 

Contrary to the interim mapping for 2017 as presented in Chapter 4, neither the validation based on 
the validated E1a measurement nor the comparison with the regular 2019 map has been done. Thus, 
we cannot evaluate the quality of the map in the areas outside the E2a data. Concerning the areas 
covered by the E2a data, by comparing the cross-validation results as presented in Table 5.6, one can 
state that the variant without the use of the pseudo data gives slightly better results. However, we can 



 

Eionet Report - ETC/ATNI 2020/11 29 

suppose that in the areas not covered by the E2a data, the variant using the pseudo data estimates 
might give better results. Thus, we present this variant as a basic one. Map 5.3 presents the final 
merged interim map of the ozone indicator SOMO35 for 2019 (in the variant using the pseudo data). 

Map 5.3 Interim concentration map of ozone indicator SOMO35, 2019, RIMM methodology using E2a 
(UTD) measurement data, pseudo data and CAMS-ENS Forecast model output 

 

Map 5.4 presents the difference between the interim map using the pseudo data (as presented in 
Map 5.3) and the interim map without the use of the pseudo data. 

Map 5.4 Difference map of ozone indicator SOMO35, 2019, interim map using pseudo data together 
with the E2a measurement and CAMS-ENS Forecast model data minus interim map using 
the E2a measurement and CAMS-ENS Forecast model data without the pseudo data  
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One can see the differences only in areas with a poor coverage of the E2a data (Italy, Balkan). In 
agreement with the results presented in Section 4.3 (and particularly in Table 4.12), one can suppose 
that the areas not covered by the E2a data might be somewhat underestimated. This leads into the 
recommendation that in future, when the data coverage of the E2a data is larger, interim ozone maps 
can be constructed without the use of the pseudo stations. However, such interim maps should be 
tested against the validated data, when available. 

 

6 Conclusions and Recommendations 

The report examines the creation of interim air quality annual maps.  

The production of interim AQ mapping based on interim E2a data and the CAMS ensemble regional 
forecast modelling data appears to be feasible and the resulting interim AQ maps have proven to have 
adequate skill for PM10 annual average, NO2 annual average and ozone indicator SOMO35. We 
therefore conclude that these mapping products have utility as a product for the evaluation of 
European AQ at an earlier juncture than would be otherwise possible using the combination of EMEP 
model and E1 data alone. Indeed, we estimate that these interim mapping products could be produced 
and made available as early as the end of April in the year subsequent to the analysis year, i.e. one 
year earlier compared to the regular maps based on the official reported E1a data. In terms of skill, the 
interim AQ maps give satisfactory performance, in general.  

There are some notable limitations of these AQ mapping products, however. First, it should be stated 
clearly that since the interim maps are based on un-validated data the maps should not be considered 
definitive. Indeed, while the interim AQ maps have an adequate performance in general, the statistical 
evaluation against E1a data shows a bias (i.e., somewhat lower results) for ozone in the areas poorly 
covered by the E2a data. Their utility, therefore, is strictly for guidance purposes in support of annual 
reporting of AQ by member states. In addition, the absence of any E2a data from Turkey and a high 
uncertainty of the mapping results in the relevant area severely limits the utility of the interim maps 
over this country.  

Next to Turkey, the E2a data gaps threaten the interim mapping also in some other areas. In order to 
overcome this obstacle, we have examined the use of so-called pseudo stations data in the interim 
mapping. The estimates of these pseudo stations data are based on the regression relation between 
the E2a data from the year Y and the validated E1a data from the year Y-1, together with the ratio of 
the modelling results from years Y and Y-1. The pseudo station estimates give good results for PM10 
and NO2, while somewhat poorer results for ozone. For ozone, their use in the interim mapping leads 
into the underestimation of ca. 10-15 % in areas not covered by the E2a data. The use of the pseudo 
station data in the interim mapping is recommended for PM10 and NO2. For ozone, the potential use 
of the pseudo data should be provisional only, until the data coverage of the E2a data is larger and 
the interim ozone maps might be constructed without the use of the pseudo stations. The 
construction of the ozone interim maps is a subject for improvement and the performance of these 
maps should be tested against the validated data, when available. 

We have also briefly checked the possibility to prepare the interim map for PM2.5, but due to a low 
number of the E2a data and their irregular spatial distribution (specifically in the rural areas), we 
have decided not to perform the interim mapping for this pollutant. In future, we might reconsider 
this, when more E2a data for PM2.5 is available. 

Due to the key advantage of the interim maps (i.e., timeliness) and their sufficient quality we 
recommend that the production of interim AQ maps (for basic PM10, NO2 and ozone indicators) 
based on CAMS regional ensemble forecast and E2a data become part of the routine AQ mapping 
carried out by ETC/ATNI, next to the regular maps created based on the validated E1a data. We 
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believe the increased timeliness of delivery will greatly support annual reporting of AQ by member 
states. 

It should be noted that only the spatial maps, but not the exposure estimates have been examined in 
this report. One should bear in mind that the exposure estimates are more sensible on a bias than 
the concentration maps. For future, it might be recommended to examine the exposure estimates of 
the interim maps. 
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Annex 
Maps of measurement stations used for mapping 

 
This Annex presents the maps showing the air quality stations used for the mapping and validation of 
2017 interim maps and for the mapping of 2019 interim maps, for three pollutants PM10, NO2 and 
ozone.  

Maps A.1, A.2 and A.3 show the spatial distribution of the rural, urban/suburban background and 
urban/suburban traffic stations (for PM10 and NO2) used in the interim 2017 mapping (in green and 
orange) and validation (in red), for different pollutants. In all figures, the true stations (in green) and 
the pseudo stations (in orange) are distinguished.  

Maps A.4, A.5 and A.6 show the spatial distribution of the rural, urban/suburban background and 
urban/suburban traffic stations (for PM10 and NO2) used in the interim 2019 mapping, for different 
pollutants. In all figures, the true stations (in green) and the pseudo stations (in orange) are 
distinguished. 
 

Map A.1 Spatial distribution of PM10 stations used in mapping and validation, 2017 
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Map A.2 Spatial distribution of NO2 stations used in mapping and validation, 2017 
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Map A.3 Spatial distribution of O3 background stations used in mapping and validation, 2017 
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Map A.4 Spatial distribution of PM10 stations used in interim mapping, 2019 
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Map A.5 Spatial distribution of NO2 stations used in interim mapping, 2019 
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Map A.6 Spatial distribution of O3 background stations used in interim mapping, 2019 
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